

Systematic literature review \& survey

Selecting themes \& items

- Types of residences in your NH (3 items)
- Distance to local facilities (8 items)
- Walking or cycle infrastructure in your NH (4 items)
- Maintenance of infrastructure in your NH (3 items)
- NH safety (6 items)
- How pleasant is your NH (4 items)
- Cycling and walking network (4 items)
- Home environment (6 items)
- Workplace or study environment (10 items)

1st field testing : outcomes

- TEST-RETEST RELIABILITY
- PREDICTIVE VALIDITY
- FEASIBILITY

Conclusions First field testing		
		rate to good asting results < 7 min
- Short version:	reliability: validity: feasability:	moderate $0.21-0.34$ with ipaq and acc good < 2 min
\Rightarrow Rephrasing items for those with moderate results \Rightarrow Consensus second expertmeeting \Rightarrow Additional pilot testing		

Conclusions

- The reliability scores improved from the 1st field testing (ICC from
0.66 to 0.86) to the 2nd field testing (ICC from 0.71 to 0.87).
- \% agreement for short form also increased from the 1st field testing
(range $50-83 \%$) to the 2nd field testing (range $85-95 \%$).
- Predictive validity: significant with self-reported minutes of transport-
related walking, and objectively measured physical activity levels at
low intensity, particularly in women.
- Feasibility: less than 7 minutes for the 49-item version and less than
2 minutes for the short version.

Manuscript in preparation

Heleen Spittaels, Maïté Verloigne, Christopher Gidlow, Julien Gloanec, Sylvia Titze, Charlie Foster, Jean-Michel Oppert, Harry
Rutter, Pekka Oja, Michael Sjöström, llse De Bourdeaudhuij
Measuring physical activity-related environmental factors: reliability and predictive validity of the European environmental questionnaire ALPHA

FOR MONITORING

We recommend to include the Alpha environmental questionnaire as a monitoring tool in ongoing health surveys in every European country.

The survey should measure key domains such as walking \& cycling for transport and leisure time / work related physical activity

The Alpha Q lasts on average 6 minutes to be completed and is the recommended form. If this is not possible also the Alpha short form can be used (1 to 2 minutes).

Recommendations

FOR RESEARCH

The Alpha environmental questionnaire is a valid and reliable instrument to measure the build environment for research purposes in Europe.

The Alpha Q is based on the NEWS but is much shorter and includes some specific EU items. For comparison purposes with US/AU the NEWS can also be used in EU preferably including also the specific items.

Availability of the questionnaire

- Website
- Manual of operation
- Different languages:
- English
- Dutch
- French
- German
- Spanish
- Finnish

International Expert group				
Jim Sallis	(US)	Maria Hagstromer	(Sweden)	
Neville Owen	(Australia)	Patrick Bergmann	(Sweden)	
Klaus Gebel	(Germany/Australia)	Kristina Sundquist	(Sweden)	
Fiona Bull	(UK/Australia)	Rachel Davy	(UK)	
Pekka Oja	(Finland)	David Ogilvie	(UK)	
Basile Chaix	(France)	Melvin Hillsdon	(UK)	
Sylvia Titze	(Austria)	Roger Macket	(UK)	
Frank Van Lenthe (Netherlands)	Andy Jones	(UK)		
		Andrea Backovic	(Slovenia)	
		Djomba Janet Klara	(Slovenia)	

Introduction

- Existing literature on physical environment and PA in adults: mainly US and Australian studies
- Strong need for European studies
- Large differences in physical environments \leftrightarrow US and Australia
- Differences in PA behaviour: cycling in Europe
- Belgium : Belgian Environmental Physical Activity Study (BEPAS)
- 1st large-scale European study on relation walkability PA - sedentary behaviour - BMI in adults

Results: neighbourhood walkability - PA

	High walkability (mean (SD))	Low walkability (mean (SD))	β (SE)
IPAQ (min/week)			
walking transport	7.3 (169.2)	37.6 (90.1)	$0.764(0.157)^{* * *}$
cycling transport	3 (126.7)	43.9 (95.2)	0.447 (0.105)***
motor transport	309.2 (295.3)	344.8 (315.7)	$-0.125(0.067)^{*}$
walking recreation	85.3 (137.2)	67.6 (128.4)	$0.334(0.111)^{* *}$
Activity monitor (min/day) MVPA			
	. 6 (23.8)	31.8 (23.1)	$0.095(0.030)^{* * *}$

$p<0.05 ; " p<0.01 ; \cdots p<0.001$

Results: walkability-sedentary behaviour -
BMI - waist circumference

Discussion \& conclusions

- Living in high walkable neighbourhoods:
- $80 \mathrm{~min} /$ week more walking for transport
- $40 \mathrm{~min} /$ week more cycling for transport
- $20 \mathrm{~min} /$ week more walking for recreation
- $35 \mathrm{~min} /$ week less motor transport
- $50 \mathrm{~min} /$ week more MVPA (accelerometer)
- Lower BMI, in men and women
- BUT ALSO
- $35 \mathrm{~min} /$ day more sitting time
- $20 \mathrm{~min} /$ day more inactivity (accelerometer)

Discussion \& conclusions

- Results ~ Australian and US studies
- Clear relationship between walkability and PA in adults
- Walking AND cycling
- For transportation AND recreation
- Possibilities for future interventions: $=$ PA behaviours can be influenced

Discussion \& conlusions

- Positive association with PA,

BUT negative association with sedentary behaviour

- Still: lower BMI in high walkable neighbourhoods
- Mediating effect of PA and sedentary behaviour?

Discussion \& conclusions

- Interactions walkability - SES
- No significant results
- Interesting finding
- Robust effects of walkability independent of SES
- Future interventions: both high and low SES neighbourhoods can profit

